Hybridpolymere und ihre Anwendung in Lithium-Ionen-Akkumulatoren

Workshop Elektrochemie, Materials Valley e. V., 24.01.13 in Hanau

Christine Brinkmann, Andreas Bittner, <u>Henning Lorrmann</u> Fraunhofer-Institut für Silicatforschung ISC, Würzburg

Inhalt

- Fraunhofer ISC im Überblick
- Hybridpolymer-Elektrolyte
 - Synthese
 - Eigenschaften
- Glas/Polymer-Komposite
- Core Shell Beschichtungen

Inhalt

Fraunhofer ISC im Überblick

- Hybridpolymer-Elektrolyte
 - Synthese
 - Eigenschaften
- Glas/Polymer-Komposite
- Core Shell Beschichtungen

Fraunhofer-Gesellschaft Standorte in Deutschland

- 60 Institute
- mehr als 20 000
 Mitarbeiterinnen und Mitarbeiter
- 1,8 Mrd € Forschungsvolumen jährlich, davon 1,5 Mrd € im Leistungsbereich Vertragsforschung
- Institute und Einrichtungen
- weitere Standorte

Fraunhofer-Gesellschaft Bayerische Standorte

© Fraunhofer

Fraunhofer ISC – das Forschungsunternehmen

18,5 Mio € Budget

13,3 Mio € aus Auftragsforschung +5,2 Mio € aus institutioneller Förderung

- Rund 315 Mitarbeiter
- ca. 320 Projekte in 2011 erfolgreich umgesetzt (plus etwa 900 Kleinaufträge)
- 25 Patente in 2011 angemeldet
- mehr als 200 wissenschaftliche Kooperationen national und international
- 4 Standorte: Würzburg, Bronnbach, Bayreuth, Alzenau/Hanau

Fraunhofer ISC – Zukunft aus Tradition

»Es ist ein unendlich Kreuz ein gut Glas zu machen« (Zeichen der DGG)

- 1926: Kaiser-Wilhelm-Institut für Silikatforschung
 - Neue Impulse f
 ür die Glas-, Keramik- und Baustoffindustrie im Deutschland des Versailler Vertrags
- 1952: Max-Planck-Institut für Silikatforschung
 - Wiedergründung nach dem Krieg
 - Wichtige wissenschaftliche Beiträge zu Verständnis und Entwicklung von Gläsern und Glaskeramiken
- 1971: Fraunhofer-Institut f
 ür Silicatforschung ISC
 - Aufnahme in die Fraunhofer-Gesellschaft, Namensänderung
 - Weiterer Ausbau der industrienahen Forschung in den Bereichen Glas, Keramik und Gips, Entwicklung neuer Werkstoffe
- heute: International aufgestellter Innovationstreiber, kundennah an vier Standorten, zwei Projektgruppen als Keimzellen neuer Institute, eine davon bereits als Fraunhofer-Zentrum etabliert

Bilder: Max-Planck-Gesellschaft, Fraunhofer ISC, Zaha Hadid Architects Ltd.

© Fraunhofer

Zentrum für Angewandte Elektrochemie

Elektrodenentwicklung: Material und Oberflächenmodifikationen

Innovative Elektrolyte

© Fraunhofer

Glasentwicklung für Li-Ionenbatterien

Vollautomatisches Glasscreening

- Datenbankselektion von Gläsern
- 16 Gläser / Tag
- Glascharakterisierung

Breites Materialfenster

Überwiegend Phosphate und Chalkogenide

Entwicklung alternativer Gläser und Batteriekonzepte

Prozessierung

- Halbautomatischer Siebdruck
- Beliebige Formen und Materialien
- Flächen bis DIN A4
- Doppelseitig

Vielseitige Analysemethoden

Inhalt

Fraunhofer ISC im Überblick

- Hybridpolymer-Elektrolyte
 - Synthese
 - Eigenschaften
- Glas/Polymer-Komposite
- Core Shell Beschichtungen

Grundlagen Polymerelektrolyte

Grundlagen Polymerelektrolyte

(Gel)Polymer-Separator

Polymer-Separator

	Pouch	
	Al-Stromableiter	i I
	Kathode	
,	Polymer-Elektrolyt)
	Anode	
	Cu-Stromableiter	
	Pouch	

Anforderungen an den Elektrolyten

»Es ist ein unendlich Kreuz ein gut Glas zu machen« (Zeichen der DGG)

- Hohe ionische Leitfähigkeit
- Hohe thermische und elektrochemische Stabilität
- Sicherheit
- Günstige Ausgangsmaterialien
- Einfaches Upscaling
- Möglichkeit der wirtschaftlichen, industriellen Verarbeitung
- Für LiS und LiO₂: Kompatibilität mit Li-Anode

Vielzahl unterschiedlicher, teilweise gegensätzlicher Eigenschaften

Die Mischung macht's: Hybridpolymer-Elektrolyt

Hybridpolymer-Elektrolyte: Die Bausteine

Hybridpolymer-Elektrolyte: 5 Stufen zur fertigen Zelle

- 1. Synthese der Vorstufen, Verknüpfung der Si-Gruppen (Anorg. Netzwerk)
- 2. Einarbeitung des Leitsalzes, ggf. Partikel und Additive (Glovebox)
- 3. Zugabe Initiator
- 4. Aufbringen auf Elektrode
- 5. Thermische Aushärtung (Organisches Netzwerk)

Verarbeitung der flüssigen Vorstufe für die Anbindung an die Elektrode

Charakterisierung: Raman-Spektroskopie

Konstruktion des anorganischen Netzwerkes über

- 1. Hydrolyse
- 2. Kondensation

 $= Si-OR + H_2O \longrightarrow = Si-OH + ROH 1)$ $= Si-OR + HO-Si \longrightarrow = Si-O-Si + ROH 2a)$ $= Si-OH + HO-Si \longrightarrow = Si-O-Si + HOH 2b)$

Charakterisierung: ¹H, ¹³C, ²⁹Si-NMR Spektroskopie

Konstruktion des anorganischen Netzwerkes über

- 1. Hydrolyse
- 2. Kondensation

Charakterisierung: Thermische Untersuchungen

DSC-TG unter synthetischer Luft

verbesserten Sicherheit

Impedanz-Spektroskopie

- Bestimmung der Leitfähigkeit in einer 2-Elektroden Zelle mit symmetrischen polierten Stahlelektroden
- Ermittlung in Abhängigkeit des Füllstoff-Gehalts:
 - Aktivierungsenergie
 - VT-Temperatur
 - Glastemperatur

Impedanz-Spektroskopie

Hybridpolymer-Elektrolyt: $\sigma = 6.10^{-5}$ S/cm

- + Flüssigelektrolyt:
- $\sigma = 6.10^{-4}$ S/cm

+ Füllstoffe:

- → gleichbleibende Leitfähigkeit
- \rightarrow Verbesserung mech. Eigenschaften
- → Verbesserung Überführungszahl

Zyklische Voltammetrie

1. Arbeitselektrode Platin, poliert

2. Batterie-Elektroden in Halbzellen Aufbau

Test der Kompatibilität

 Stabilität in Zyklisierungsversuchen

Zyklische Voltammetrie

Li₄Ti₅O₁₂ | Polymer BO17 | LiFePO₄

Hohe Zyklenstabilität, Effizienz > 99 % (Galvanostatisches Laden CCCV, 2C Vollzyklen, Raumtemperatur)

Hohe Laderate bis 10C

Inhalt

Fraunhofer ISC im Überblick
 Hybridpolymer-Elektrolyte
 Synthese
 Eigenschaften
 Glas/Polymer-Komposite
 Core Shell Beschichtungen

Glasentwicklung für Li-Ionenbatterien

Vollautomatisches Glasscreening

- Datenbankselektion von Gläsern
- 16 Gläser / Tag
- Glascharakterisierung

Breites Materialfenster

Überwiegend Phosphate und Chalkogenide

Entwicklung alternativer Gläser und Batteriekonzepte

Lithium-Ionen leitende Gläser & Keramiken

- Anorganische Festkörperionenleiter
 - Hohe ionische Leitfähigkeit
 - Großes Spannungsfenster
 - Für Batterien der nächsten Generationen (LiS, LiO₂)

[1] N. Kamaya et al., Nature Mater. **2011**, *11*, 682-686.

Lithium-Ionen leitende Gläser & Keramiken

Anorganische Feststoffelektrolyte:

- potentiell hohe ionische Leitfähigkeiten
- sehr hohe elektrochemische Stabilität
- nicht flammbar

Glas: $\sigma \sim 10^{-9}$ S/cm

Keramik: $\sigma \sim 10^{-5}$ S/cm

- Leitfähigkeiten abhängig von Kristallisationszeit und –temperatur
- Bis zu $\sigma = 2 \cdot 10^{-4}$ S/cm (Li_{1+x}Al_xGe_{2-x}(PO)₄, RT)

Glas/Polymer-Komposite

Glas-Separator

Pouch
Al-Stromableiter
Kathode
Glas-Elektrolyt
Anode
Cu-Stromableiter
Pouch
Polymer
Glas

Glas/Polymer-Komposit

	Pouch	
\sum	Al-Stromableiter	5
	Kathode	
Ş	Glas/Polymer-Komposit	5
	Anode	
	Cu-Stromableiter	
	Pouch	

Inhalt

Fraunhofer ISC im Überblick
Hybridpolymer-Elektrolyte
Synthese
Eigenschaften
Glas/Polymer-Komposite
Core Shell Beschichtungen

Hybridpolymer als künstliche SEI

Core-Shell Partikel

	Pouch
\sum	Al-Stromableiter
	Kathode
	Polymer-Elektrolyt
	Anode
	Cu-Stromableiter
	Pouch
-	

Standard Elektrode

Binder

Aktivmaterial

Leitruß

Hybridpolymer als künstliche SEI

Core-Shell Partikel

- Schutz des Elektrodenmaterials vor Elektrolyteinwirkung
- Strukturelle Stabilisierung des Elektrodenmaterials
- Verminderter Kapazitätsverlust nach dem ersten Ladevorgang
- Verbesserung der Zyklenfestigkeit
- Ermöglicht hohe Spannungen

NCM mit Li+-leitender Polymerbeschichtung

NCM mit Polymerbeschichtung

NCM mit Polymerbeschichtung (links, unten liegend) NCM ohne Beschichtung (rechts, aufgestrichen)

REM deutet auf vollständige Beschichtung mit Hybridpolymer hin

NCM mit Li⁺-leitender Polymerbeschichtung

XPS und TEM zeigen vollständige Beschichtung mit Hybridpolymer

NCM mit Li⁺-leitender Polymerbeschichtung

Hohe Elastizität, potentiell auch für Siliziumanoden geeignet

Zusammenfassung

- Hybridpolymer-Elektrolyte
 - Hohe thermische und elektrochemische Stabilität
 - Sicherheit
 - Günstige Ausgangsmaterialien
 - Einfaches Upscaling
 - Möglichkeit der wirtschaftlichen, industriellen Verarbeitung
- Weitere Verbesserung der Eigenschaften durch
 - Glas/Polymer-Komposite
 - Core Shell Beschichtung
- Fraunhofer ISC als Ansprechpartner für
 - Materialentwicklung im Bereich LiB, EDLC ...
 - Test von Batteriekomponenten und Zellen

Henning Lorrmann

© ZAHA HADID ARCHITECTS

Neunerplatz 2, 97082 Würzburg; Phone: +49 (0)931 4100-519 henning.lorrmann@isc.fraunhofer.de

